wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (sinθsecθ)2+(cosθcosecθ)2=(1secθcosecθ)2

Open in App
Solution

LHS=(sin2θ2sinθsecθ+sec2θ)+(cos2θ2cosθ.cosecθ+cosec2θ)

=(sin2θ+cos2θ)+(sec2θ+cosec2θ)2[sinθ.secθ+cosθ.cosecθ]

=1+[1cos2θ+1sin2θ]2[sinθcosθ+cosθsinθ]

=1+[sin2θ+cos2θsin2θ.cos2θ]2[sin2θ+cos2θsinθ.cosθ]

=1+1sin2θ.cos2θ2sinθcosθ

=1+sec2θ.cosec2θ2secθ.cosecθ

=(1secθ.cosecθ)2

LHS=RHS

Hence proof.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon