|z1+z2|2+|z1−z2|2
=(z1+z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2)+(z1−z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−z2)
=(z1+z2)(¯¯¯¯¯z1+¯¯¯¯¯z2)+(z1−z2)(¯¯¯¯¯z1−¯¯¯¯¯z2)
2z1¯¯¯¯¯z1+2z2¯¯¯¯¯z2 [other terms cancel]
=|z1|2+2|z2|2
Geometrical Interpretation.
Let P and Q be the points of affix of z1 and z2 respectively.
Complete the parallelogram OPRQ. Then R represents the point z1+z2.
Hence |z1|=OP, |z2|=OQ, |z1+z2|=OR and |z1−z2|=QP.
We know that the sum of squares of the sides of a parallelogram is equal to the sum of squares of its diagonals, that is
2OP2+2OQ2=OR2+QP2
or 2|z1|2+2|z2|2=|z1+z2|2+|z1−z2|2
Deduction : Let z1=α−√α2−β2
and z2=α−√α2−β2.
∴z1+z2=2α,
z1−z2=2√α2−β2 ...(2)
z1z2=α2−(α2−β2)=β2 ...(3)
Square both sides of the result to be proved.
|z1|2+|z2|2+2|z1z2|=[|α+β|+|α−β|]2
L.H.S.=12[|z1+z2|+|z1−z2|2]+2|z1z2|
=12[|2α|2+2∣∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯α2−β2∣∣∣2+2∣∣β2∣∣]
=[2|α|2+2|β|2+2|α+β||α−β|]
=|α+β|2+|α−β|2+2|α+β||α−β|
=[|α+β|+|α+β|]2
Proceed as in last part.