Prove that limx→a+[x] =[a] for all a∈R. Also, prove that limx→1−[x]=0
limx→a+[x]
Let x=a+h⇒h=x−a
as x→a+⇒x>a slightly
⇒x−a>0⇒h>0
⇒h→0+
⇒limh→0+[a+h]=[a]
⇒limh→a+[x]=[a]∀a∈R
Also, limx→1+[x]
Let x =1-h
⇒h=1−x
as x→1−⇒x<1 slightly
⇒1−x<0⇒h<0
⇒h→0−
=limh→0−[1−h]=0
=limx→1−[x]=0