Given line L:x−33=y−3−4=z−52
And M:x6=y−5−8=z−34
Direction of first line ¯l=(3,−4,2)
Direction of second line ¯m=(6,−8,4)
Now ¯lׯm=∣∣
∣∣ijk3−426−82∣∣
∣∣
=i(−16+16)−j(12−12)+k(−24+24)
=(0,0,0)
=¯0
¯lׯm=¯0
∴ line l = line m OR line L || line M
∴ From first equation of line we have
A(¯a)(3,3,5)
∴ Line M:x6=y−5−8=z−34
∴36=3−5−8=5−24 which is not valid
∴(3,3,5)/∈M
∴L≠M
∴L||M
∴ Given lines are parallel equation of the plane passes from parallel lines in as follows
∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1l1l2l3∣∣
∣∣=0
∴ Required plane, ∣∣
∣∣x−3y−3z−50−35−32−53−42∣∣
∣∣=0
∴∣∣
∣∣x−3y−3z−5−32−33−42∣∣
∣∣=0
∴(x−3)(4−12)−(y−3)
(−6+9)+(z−5)(12−6)=0
∴(x−3)(−8)−(y−3)(3)+(z−5)6=0
∴−8x+24−3y+9+6z−30=0
∴−8y−3y+6z+3=0
∴8x+3y−6z=3
Which is required equation of plane.