1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Inductive Step
Prove that ma...
Question
Prove that mathematical induction that
1
1
+
x
+
2
1
+
x
2
+
4
1
+
x
4
+
.
.
.
+
2
n
1
+
x
2
n
=
1
1
−
2
n
+
i
1
+
x
2
n
+
i
Open in App
Solution
P(0) =
1
1
+
x
,
1
1
−
x
+
2
1
+
x
2
=
1
1
−
x
−
2
x
2
−
1
=
x
+
1
−
2
(
x
2
−
1
)
=
1
1
+
x
Thus P(0) holds goods. Assume P(n)
P(n + 1) = P(n) +
2
n
+
1
1
+
x
2
n
+
1
=
1
1
+
x
+
2
n
+
1
1
−
x
2
n
+
1
+
2
n
+
1
1
+
x
2
n
+
1
=
1
1
+
x
+
2
n
+
1
(
1
+
1
)
1
−
(
x
2
n
+
1
)
2
=
1
x
−
1
+
2
n
+
2
1
−
x
2
n
+
2
Suggest Corrections
0
Similar questions
Q.
The sum of
1
x
+
1
+
2
x
2
+
1
+
4
x
4
+
1
+
.
.
.
.
+
2
n
x
2
n
+
1
is
Q.
Obtain the sum of
1
x
+
1
+
2
x
2
+
1
+
4
x
4
+
1
+
.
.
.
.
+
2
n
x
2
n
+
1
Q.
Prove that the mathematical induction that
1
+
1
2
+
1
3
+
1
4
+
.
.
.
,
1
2
n
≥
1
+
n
2
for each no negative interger n
Q.
Prove the following by using the principle of mathematical induction for all n ∈ N: