L.H.S
secA−tanA
=1cosA−sinAcosA
=1−sinAcosA
=1−sinAcosA×1+sinA1+sinA
=1−sin2AcosA(1+sinA)
=cos2AcosA(1+sinA)[∵1−sin2A=cos2A]
=cosA(1+sinA)
Hence, proved.
prove that inA-cosA+1÷sinA+cosA-1=1÷secA-tanA using identity sec2A = 1+tan2A