Prove that minimum value of asecx−btanx is √a2−b2 where a and b are + ive, a > b
Open in App
Solution
If u=asecx−btanx (u + b tan x)2 = a2(1+tan2x) or tan2x(a2−b2)−2butanx+a2−u2=0 Δ≥0,−a2(a2−b2−u2)≥0 or a2(u2−a2+b2)≥0 ∴u2≥(a2−b2)⇒u≥√(a2−b2). ∴ Min.value of u is √(a2−b2).