wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
nPr=n1Pr+r.n1Pr1

Open in App
Solution

nPr=n1Pr+r.n1Pr1

Now, n1Pr+r.n1Pr1

=(n1)!(n1r)!+r(n1)!(n1r+1)!

=(n1)!{1(n1r)!+r(nr)!}

=(n1)!{1(n1r)!+r(nr)!}

=(n1)!{nr+r(nr)!}

=n(n1)!(nr)!

=n!(nr)!

=nPr

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Exponents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon