Let
x,y be the length and breadth of rectangle whose are is
A and perimeter is
P.
⇒ P=2(x+y) --- ( 1 )
We know, A=x×y
∴ y=Ax ---- ( 2 )
Substituting value of ( 2 ) in ( 1 ) we get,
⇒ P=2(x+Ax)
For maximum or minimum values of perimeter P
⇒ dPdx=2(1−Ax2)=0
⇒ 1−Ax2=0
⇒ x2=A
⇒ x=√A [ Dimension of rectangle is always positive ]
Now, d2Pdx2=2(0−A×(−1)x3)=2Ax3
∴ [d2Pdx2]x=√A=2a(√A)3>0
i.e., for x=√A,P (perimeter of rectangle ) is smallest.
y=Ax=A√A=√A
Hence, for smallest perimeter, length and breadth of rectangle are equal (x=y=√A) i.e., rectangle is square.