Given: Let ABCD be the quadrilateral circumscribing the circle with centre O.
ABCD touches the circle at points P, Q, R and S.
To prove: Opposite sides subtends supplementary angles at centre.
i.e., ∠AOB+∠COD=180o
& ∠AOD+∠BOC=180o
Construction: Join OP, OQ, OR and OS.
Proof: Let us rename the angles
In ΔAOP and ΔAOS,
AP=AS
(Length of tangents drawn from external point to a circle are equal)
AO=AO (common)
OP=OS (both radius)
ΔAOP≅ΔAOS(SSS congruence rule)
∠AOP=∠AOS(CPCT)
i.e., ∠1=∠8 …………….(1)
Similarly, we can prove
∠2=∠3 ……………….(2)
∠5=∠4 ………………..(3)
∠6=∠7 ……………….(4)
Now,
∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360o
(sum of angles round a point is 360o)
∠1+∠2+∠3+∠4+∠5+∠6+∠1=360o
∠1+∠2+∠5+∠6=360o2
(∠1+∠2)+(∠5+∠6)=180o
∠AOB+∠COD=180o
Hence both angles are supplementary.
similarly, we can prove
∠BOC+∠AOD=180o
Hence proved.