wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that opposite sides of a quadrilatral circumscribing a ciecle subtend supplementary angle at the centre of the circle.
1462271_f0386aabcb7f41cbad21c47ba939edc5.png

Open in App
Solution

Given: Let ABCD be the quadrilateral circumscribing the circle with centre O.
ABCD touches the circle at points P, Q, R and S.

To prove: Opposite sides subtends supplementary angles at centre.
i.e., AOB+COD=180o

& AOD+BOC=180o

Construction: Join OP, OQ, OR and OS.


Proof: Let us rename the angles

In ΔAOP and ΔAOS,
AP=AS
(Length of tangents drawn from external point to a circle are equal)

AO=AO (common)

OP=OS (both radius)

ΔAOPΔAOS(SSS congruence rule)

AOP=AOS(CPCT)

i.e., 1=8 …………….(1)

Similarly, we can prove
2=3 ……………….(2)
5=4 ………………..(3)
6=7 ……………….(4)

Now,
1+2+3+4+5+6+7+8=360o
(sum of angles round a point is 360o)

1+2+3+4+5+6+1=360o

1+2+5+6=360o2

(1+2)+(5+6)=180o

AOB+COD=180o

Hence both angles are supplementary.

similarly, we can prove
BOC+AOD=180o

Hence proved.

1225135_1462271_ans_3b9674ab52384176a7f32185c291160a.png

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Parallelograms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon