Prove that ¯¯¯a=(4,−3,1),¯¯b=(2,−4,5) and ¯¯c=(1,−1,0) are vertices of a right angle.
Open in App
Solution
→a=(4,−3,1)
→b=(2,−4,5)
→c=(1,−1,0)
→ab=→b−→a=(2−4)^i+(−4+3)^j+(5−1)^k
=2^i−^j+4^k
→bc=→c−→b=(1−2)^i+(−1+4)^j+(0−5)^k
=−^i+3^j−5^k
→ca=→a−→c=(4−1)^i+(−3+1)^j+(1−0)^k
=3^i−2^j+^k
now ∣∣→ab∣∣=√4+1+16=√21 units
∣∣→bc∣∣=√25+9+1=√35 units
|→ca|=√9+4+1=√14 units
we can see that
∣∣→ab∣∣2+|→ca|2=∣∣→bc∣∣2
∵(√212+√142=(√35)2)
So we have the square of the two sides of a triangles is equal to the square of the third which is basically the pythagoras theorem, Hence →a,→b&→c are the coordinates of a right angle triangle, right angled at →a.