Distance formula is given by,
D=√(x2−x1)2+(y2−y1)2
A≡(csc2θ,0),B≡(0,sec2θ),C≡(1,1)
(AB)2=(csc2θ−0)2+(0−sec2θ)2
=(1+cot2θ)2+(1+tan2θ)2
upon simplification, we get
AB=sec2θtan2θ√1+tan4θ...(1)
(AC)2=(csc2θ−1)2+(0−1)2
(AC)2=(cot2θ)2+1
upon simplification, we get,
AC=√1+tan4θtan2θ...(2)
(CB)2=(0−1)2+(sec2θ−1)2
(CB)2=1+tan4θ
CB=√1+tan4θ...(3)
Adding (2) and (3), we get,
AC+CB=√1+tan4θtan2θ+√1+tan4θ
=√1+tan4θ+tan2θ√1+tan4θtan2θ
=√1+tan4θtan2θ(1+tan2θ)
=sec2θtan2θ√1+tan4θ
=AB
Therefore A,B,C are collinear and hence proved.