1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Complementary Trigonometric Ratios
Prove that 2...
Question
Prove that
sec
(
270
∘
−
A
)
sec
(
90
∘
−
A
)
−
tan
(
270
∘
−
A
)
tan
(
90
∘
+
A
)
+
1
=
0
.
Open in App
Solution
sec
(
270
∘
−
A
)
sec
(
90
∘
−
A
)
−
tan
(
270
∘
−
A
)
tan
(
90
∘
+
A
)
+
1
=
(
−
c
o
s
e
c
A
)
(
c
o
s
e
c
A
)
−
(
c
o
t
A
)
(
−
c
o
t
A
)
+
1
=
c
o
t
2
A
−
c
o
s
e
c
2
A
+
1
=
−
1
+
1
(Since,
c
o
s
e
c
2
A
−
c
o
t
2
A
=
1
)
=
0
Suggest Corrections
0
Similar questions
Q.
State true or false
tan
18
0
+
tan
27
0
+
tan
18
0
⋅
tan
27
0
=
1
Q.
1 +
t
a
n
2
A
=
s
e
c
2
A
is valid for which of the following ranges
Q.
Which of the following options is/are true?
[
A
∈
(
0
∘
,
90
∘
)
]
Q.
Prove the following :
(i) sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
(ii)
cos
90
°
-
θ
sec
90
°
-
θ
tan
θ
cosec
90
°
-
θ
sin
90
°
-
θ
cot
90
°
-
θ
+
tan
90
°
-
θ
cot
θ
=
2
(iii)
tan
90
°
-
A
cot
A
cosec
2
A
-
cos
2
A
=
0
(iv)
cos
90
°
-
A
sin
90
°
-
A
tan
90
°
-
A
=
sin
2
A
(v) sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1