L.H.S=sec4A(1−sin4A)−2tan2A
We know that,
a2−b2=(a+b)(a−b)
Therefore,
=sec4A(1−sin2A)(1+sin2A)−2tan2A
=sec2Acos2A(cos2A)(1+sin2A)−2tan2A[∵1−sin2x=cos2x]
=sec2A(1+sin2A)−2tan2A
=sec2A+tan2A−2tan2A
=sec2A−tan2A
=1
=RHS
Hence, it proved.
Prove the following identities:
sec4A(1−sin4A)−2tan2A=1