wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sec6Atan6A=1+3tan2A+3tan4A

Open in App
Solution

sec6Atan6A=1+3tan2A+3tan4A
We know that a3b3=(ab)(a2+ab+b2)
sec6Atan6A=(sec2Atan2A)((sec2A)2+sec2Atan2A+(tan2A)2)
sec6Atan6A=((1+tan2A)tan2A)((1+tan2A)2+(1+tan2A)tan2A+tan4A)[sec2A=1+tan2A]
sec6Atan6A=(1+tan2Atan2A)(1+tan4A+2tan2A+tan2A+tan4A+tan4A)
sec6Atan6A=1+3tan2A+3tan4A
L.H.S. = R.H.S.
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon