1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Equations
Prove that: ...
Question
Prove that:
s
e
c
6
A
−
tan
6
A
=
1
+
3
tan
2
A
+
3
tan
4
A
Open in App
Solution
sec
6
A
−
tan
6
A
=
1
+
3
tan
2
A
+
3
tan
4
A
We know that
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
∴
sec
6
A
−
tan
6
A
=
(
sec
2
A
−
tan
2
A
)
(
(
sec
2
A
)
2
+
sec
2
A
tan
2
A
+
(
tan
2
A
)
2
)
sec
6
A
−
tan
6
A
=
(
(
1
+
tan
2
A
)
−
tan
2
A
)
(
(
1
+
tan
2
A
)
2
+
(
1
+
tan
2
A
)
tan
2
A
+
tan
4
A
)
[
∵
sec
2
A
=
1
+
tan
2
A
]
sec
6
A
−
tan
6
A
=
(
1
+
tan
2
A
−
tan
2
A
)
(
1
+
tan
4
A
+
2
tan
2
A
+
tan
2
A
+
tan
4
A
+
tan
4
A
)
sec
6
A
−
tan
6
A
=
1
+
3
tan
2
A
+
3
tan
4
A
L.H.S. = R.H.S.
Hence proved
Suggest Corrections
0
Similar questions
Q.
Prove that
sec
6
A
+
tan
6
A
=
1
+
3
tan
2
A
sec
2
A
Q.
If
sec
A
=
5
4
, verify that
3
sin
A
−
4
sin
3
A
4
cos
3
A
−
3
cos
A
=
3
tan
A
−
tan
3
A
1
−
3
tan
2
A
Q.
If sec A =
17
8
, verify that
3
−
4
sin
2
A
4
cos
2
A
−
3
=
3
−
tan
2
A
1
−
3
tan
2
A
Q.
If sec
A
=
5
4
, verify that
3
s
i
n
A
−
4
s
i
n
3
A
4
c
o
s
3
A
−
3
c
o
s
A
=
3
t
a
n
A
−
t
a
n
3
A
1
−
3
t
a
n
2
A
Q.
If
sec
A
=
17
8
, verify that
3
-
4
sin
2
A
4
cos
2
A
-
3
=
3
-
tan
2
A
1
-
3
tan
2
A
.