wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sec6θtan6θ3sec2θtan2θ = 1.

Open in App
Solution

sec6θtan6θ3sec2θtan2θ=1
Taking LHS
sec6θtan6θ3sec2θtan2θ
=(sec2θ)3(tan2θ)33sec2θtan2θ a3b3=(ab)(a2+b2+ab)
=(sec2θtan2θ)(sec4θ+tan4θ+sec2θtan2θ)3sec2θtan2θ {sec2θtan2θ=1}
=1(sec4θ+tan4θ2sec2θtan2θ)
(sec2θtan2θ)2 or (tan2θsec2θ)2
(1)2 or (1)2
=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon