3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Introduction
Prove that ...
Question
Prove that
s
e
c
6
θ
−
t
a
n
6
θ
−
3
s
e
c
2
θ
t
a
n
2
θ
= 1.
Open in App
Solution
sec
6
θ
−
tan
6
θ
−
3
sec
2
θ
tan
2
θ
=
1
Taking LHS
sec
6
θ
−
tan
6
θ
−
3
sec
2
θ
tan
2
θ
=
(
sec
2
θ
)
3
−
(
tan
2
θ
)
3
−
3
sec
2
θ
tan
2
θ
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
b
2
+
a
b
)
=
(
sec
2
θ
−
tan
2
θ
)
(
sec
4
θ
+
tan
4
θ
+
sec
2
θ
tan
2
θ
)
−
3
sec
2
θ
tan
2
θ
{
sec
2
θ
−
tan
2
θ
=
1
}
=
1
(
sec
4
θ
+
tan
4
θ
−
2
sec
2
θ
tan
2
θ
)
(
sec
2
θ
−
tan
2
θ
)
2
or
(
tan
2
θ
−
sec
2
θ
)
2
(
1
)
2
or
(
−
1
)
2
=
1
Suggest Corrections
0
Similar questions
Q.
Prove:
sec
6
θ
=
tan
6
θ
+
3
tan
2
θ
sec
2
θ
+
1
Q.
Prove that
s
i
n
7
θ
−
s
i
n
5
θ
c
o
s
7
θ
+
c
o
s
5
θ
=
t
a
n
6
θ
Q.
Prove the following trigonometric identities.
sec
6
θ = tan
6
θ + 3 tan
2
θ sec
2
θ + 1