L.H.S
sin−135−sin−1812
We know that
sin−1x−sin−1y=sin−1{x√1−y2−y√1−x2}
Therefore,
=sin−1⎧⎨⎩35√1−(817)2−817√1−(35)2⎫⎬⎭
=sin−1{35√1−64289−817√1−925}
=sin−1{35√225289−817√1625}
=sin−1{35×1517−817×45}
=sin−1{4585−3285}
=sin−1{1385}
=cos−1(8485)
Hence, proved.