Consider the L.H.S.
=sin−135+sin−1817
We know that
sin−1x+sin−1y=sin{x√1−y2+y√1−x2}
Therefore,
=sin−1(35√1−64289+817√1−925)
=sin−1(35√225289+817√1625)
=sin−1(35×1517+817×45)
=sin−1(455×17+325×17)
=sin−1(7785)
We know that
sin−1x=cos−1√1−x2
Therefore,
=cos−1√1−(7785)2
=cos−1√1296852
=cos−13685
Hence, proved.