wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sin1817+sin135=sin17785.

Open in App
Solution

We have, sin1817+sin135=sin17785

LHS=sin1817+sin135=tan1815+tan134


Let sin1817=θ1 sin θ1=817 tan θ1=815 θ1=tan1815and sin135=θ2 sin θ2=35 tan θ2=34 θ2=tan134

=tan1[815+341815×34] [ tan1 x+tan1 y=tan1(x+y1xy)]=tan1[32+4560602460]=tan1(7736)

Let θ3=tan17736 tan θ3=7736 sin θ3=775929+1296=7785 θ3=sin17785=sin17785=RHS Hence proved.

Alternate Method

To prove, sin1817+sin185=sin17785

Let sin1817=x sin x=817 cos x=1sin2 x=1(817)2=28964289=225289=1517

Let sin135=y sin y=35 sin2 y=925 cos2 y=1925 cos2 y=(45)2 cos y=45Now, sin(x+y)=sin x. xos y+cos x.sin y=817.45+1517.35=3285+4585=7785 (x+y)=sin1(7785) sin1817+sin135=sin17785


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon