1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
In Radius
Prove that : ...
Question
Prove that :
sin
−
1
(
5
13
)
+
cos
−
1
(
4
5
)
=
1
2
sin
−
1
(
3696
4225
)
Open in App
Solution
To prove:-
sin
−
1
(
5
13
)
+
cos
−
1
(
4
5
)
=
1
2
sin
−
1
(
3696
4225
)
Proof:-
Let
α
=
sin
−
1
5
13
⇒
sin
α
=
5
13
From right angled triangle,
tan
α
=
5
12
Similarly,
Let
β
=
cos
−
1
4
5
⇒
cos
β
=
4
5
From right angled triangle,
tan
β
=
3
4
Therefore,
sin
−
1
(
5
13
)
+
cos
−
1
(
4
5
)
=
1
2
sin
−
1
(
3696
4225
)
tan
−
1
5
12
+
tan
−
1
3
4
=
1
2
sin
−
1
(
3696
4225
)
2
tan
−
1
5
12
+
2
tan
−
1
3
4
=
sin
−
1
(
3696
4225
)
Taking L.H.S.
2
tan
−
1
5
12
+
2
tan
−
1
3
4
=
tan
−
1
⎛
⎜ ⎜ ⎜ ⎜
⎝
2
×
5
12
1
−
(
5
12
)
2
⎞
⎟ ⎟ ⎟ ⎟
⎠
+
tan
−
1
⎛
⎜ ⎜ ⎜ ⎜
⎝
2
×
3
4
1
−
(
3
4
)
2
⎞
⎟ ⎟ ⎟ ⎟
⎠
=
tan
−
1
120
119
+
tan
−
1
24
7
=
tan
−
1
⎛
⎜ ⎜ ⎜
⎝
120
119
+
24
7
1
−
(
120
119
)
(
24
7
)
⎞
⎟ ⎟ ⎟
⎠
=
tan
−
1
(
840
+
2856
833
−
2880
)
=
tan
−
1
(
−
3696
2047
)
=
sin
−
1
(
3696
4225
)
=
R.H.S.
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove that:
cos
−
1
4
5
+
sin
−
1
5
13
=
cos
−
1
33
65
.
Q.
Prove that
sin
−
1
5
13
+
cos
−
1
12
13
=
cos
−
1
119
169
Q.
Prove that
tan
−
1
63
16
=
sin
−
1
5
13
+
cos
−
1
3
5
Q.
Prove that :
s
i
n
−
1
3
5
−
c
o
s
−
1
12
13
=
s
i
n
−
1
16
65
.
Q.
Prove that :
sin
−
1
(
4
5
)
+
sin
−
1
(
5
13
)
+
sin
−
1
(
16
65
)
=
π
2
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Inradius and Exradius
MATHEMATICS
Watch in App
Explore more
In Radius
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app