Let
sin−1(817)=α and sin−1(35)=β
sinα=817 and
sinβ=35
⇒cosα=√1−sin2α and
cosβ=√1−sin2β
⇒cosα=√1−64289 and
cosβ=√1−925
⇒cosα=√289−64289 and
cosβ=√25−925
⇒cosα=√225289 and
cosβ=√1625
⇒cosα=1517 and cosβ=45
Now,
cos(α+β)=cosα.cosβ−sinα.sinβ
⇒cos(α+β)=1517×45−817×35
⇒cos(α+β)=6085−2485
⇒cos(α+β)=3685
⇒α+β=cos−13685
Therefore, ⇒sin−1817+sin−135=cos−13685
Hence
proved.