Toprovesin−1(45)+2tan−1(13)=π2now,L.H.S=sin−1(45)+2tan−1(13)=sin−1(45)+tan−1⎡⎣2×131−(13)2⎤⎦[∴2tan−1x=2x1−x2]=sin−1(45)+tan−1(2/38/9)=sin−1(45)+tan−1(34)=tan−1⎡⎢⎣45√1−(45)2⎤⎥⎦+tan−1(34)[∴sin−1x=tan−1(x√1−x2)]=tan−1(45)+tan−1(45)=tan−1(45)+cot−1(43)[as,tan−1(1x)=cot−1x]=π2[∴tan−x+cot−1x=π2,forallx∈R]=R.H.SHence,L.H.S=R.H.Sproved