wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sin10°sin30°sin50°sin70°=116


Open in App
Solution

Use appropriate trigonometric identities and simplify L.H.S

We have given,

LHS =sin10°sin30°sin50°sin70°

=sin10×12×sin(90-40)×sin(90-20)sin30=12=12[sin10×cos40×cos20]sin90-θ=cosθ

=12×12cos10[2sin10cos10×cos20×cos40]=14cos10[sin20cos20×cos40]sin2A=2sinAcosA=18cos10[2sin20cos20×cos40]=18cos10[sin40cos40]sin2A=2sinAcosA=116cos10[2sin40cos40]=116cos10×sin80sin2A=2sinAcosA=116cos10×sin(90-10)=116cos10×cos10sin90-θ=cosθ=116

=R.H.S

Hence, proved.


flag
Suggest Corrections
thumbs-up
37
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon