Prove that sin10°sin30°sin50°sin70°=116
Use appropriate trigonometric identities and simplify L.H.S
We have given,
LHS =sin10°sin30°sin50°sin70°
=sin10∘×12×sin(90∘-40∘)×sin(90∘-20∘)∵sin30∘=12=12[sin10∘×cos40∘×cos20∘]∵sin90∘-θ=cosθ
=12×12cos10∘[2sin10∘cos10∘×cos20∘×cos40∘]=14cos10∘[sin20∘cos20∘×cos40∘]∵sin2A=2sinAcosA=18cos10∘[2sin20∘cos20∘×cos40∘]=18cos10∘[sin40∘cos40∘]∵sin2A=2sinAcosA=116cos10∘[2sin40∘cos40∘]=116cos10∘×sin80∘∵sin2A=2sinAcosA=116cos10∘×sin(90∘-10∘)=116cos10∘×cos10∘∵sin90∘-θ=cosθ=116
=R.H.S
Hence, proved.
Evaluate :cos48°-sin42°
Prove that sin10+sin 30+sin 50+sin 70 =root3÷16