wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : sin105°+cos105°=cos45°.


Open in App
Solution

Use the trigonometry identity:

sin105°+cos105°=cos45°.

Taking LHS sin105°+cos105°=cos45°.

Firstly sin105°=sin(60+45)°

Also cos105°=cos(60+45)°

As we know that sin(A+B)=sinAcosB+cosAsinB

Also, cos(A+B)=cosAcosBsinAsinB

sin105°+cos105°=sin(60+45)°+cos(60+45)°=sin60°cos45°+cos60°sin45°+cos60°cos45°sin60°sin45°=cos45°(sin60°+cos60°)+sin45°(cos60°sin60°)=cos45°(sin60°+cos60°+cos60°sin60°)(cos45°=sin45°)=cos45°(2cos60°)=cos45°2×12=cos45°.

Hence proved.


flag
Suggest Corrections
thumbs-up
44
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon