wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin2π18+sin2π9+sin27π18+sin24π9=2

Open in App
Solution

LHS=sin2π18+sin2π9+sin27π18+sin24π9

=sin2π18+sin24π9+sin2π9+sin27π18

=sin2(π24π9)+sin24π9+sin2π9+sin2(π2π9)[π18=π24π9 and 7π18=π2π9]

=cos24π9+sin24π9+sin2π9+cos2π9

(sin(π2θ)=cosθ)=1+1[sin2θ+cos2θ=1]

=2 =RHS Hence proved.


flag
Suggest Corrections
thumbs-up
126
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon