Prove that: sin2π18+sin2π9+sin27π18+sin24π9=2
LHS=sin2π18+sin2π9+sin27π18+sin24π9
=sin2π18+sin24π9+sin2π9+sin27π18
=sin2(π2−4π9)+sin24π9+sin2π9+sin2(π2−π9)[∵π18=π2−4π9 and 7π18=π2−π9]
=cos24π9+sin24π9+sin2π9+cos2π9
(∵sin(π2−θ)=cosθ)=1+1[∵sin2θ+cos2θ=1]
=2 =RHS Hence proved.