To prove: sin20∘sin40∘sin60∘sin80∘=316
L.H.S =sin20∘sin40∘sin60∘sin80∘
Multiplying & dividing by 2
=12sin60∘[2sin20∘sin40∘]sin80∘
[∵2sinAsinB=cos(A−B)−cos(A+B)]
=12×√32[cos(20∘−40∘)−cos(20∘+40∘)]sin80∘
[∵sin60∘=√32]
=√34[cos20∘−cos60∘]sin80∘
[cos(−θ)=cosθ]
=√34sin80∘[cos20∘−12]
L.H.S =√34sin80∘[cos20∘−12]
=√34sin80∘cos20∘−√38sin80∘
=√34sin(90∘−10∘)cos20∘−√38sin80∘
=√34cos10∘cos20∘−√38sin80∘
[∵sin(90∘−θ)=cosθ]
=√38[2cos10∘cos20∘]−√38sin80∘
[∵2cosAcosB=cos(A+B)+cos(A−B)]
=√38[cos(10∘+20∘)+cos(10∘−20∘)]−√38sin80∘
L.H.S =√38[cos(10∘+20∘)+cos(10∘−20∘)]−√38sin80∘
=√38[cos30∘+cos(−10∘)]−√38sin80∘
=√38[cos30∘+cos(10∘)]−√38sin80∘
=√38[cos30∘+cos(90∘−80∘)]−√38sin80∘
=316+√38sin80∘−√38sin80∘
[∵cos(90∘−θ)=sinθ]
=316
= R.H.S
Hence, proved.