wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin3A.sin3A+cos3A.cos3A=cos32A

Open in App
Solution

Recall
cos3A=4cos3A3cosA
and
sin3A=3sinA4sin3A
Using these in LHS,
The L.H.S =cos3A(4cos3A3cosA)+sin3A(3sinA4sin3A)
4cos6A3cos4A+3sin4A4sin6A
4(cos6Asin6A)3(cos4Asin4A)
4{(cos2A)3(sin2A)3}3{(cos2A)2(sin2A)2}
4{cos2Asin2A}{(cos2A)2+cos2Asin2A+(sin2A)2}3(cos2Asin2A)(cos2A+sin2A)
(cos2Asin2A)[4{(cos2A)2+cos2Asin2A+(sin2A)2}3.1]
(cos2Asin2A)[4cos2A+4cos2Asin2A+4sin4A3(cos2A+sin2A)2]
(cos2Asin2A)[4cos4A+4cos2Asin2A+4sin4A3(cos4A+2cos2Asin2A+sin4A)]
(cos2Asin2A)[cos4A2cos2Asin2A+sin4A]
(cos2Asin2A)(cos2Asin2A)2,
(cos2Asin2A)3
(cos2A)3
cos32A
=RHS Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon