1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identity- 1
Prove that: ...
Question
Prove that:
s
i
n
4
A
−
c
o
s
4
A
=
2
s
i
n
2
A
−
1
Open in App
Solution
LHS =
s
i
n
4
A
−
c
o
s
4
A
=
(
s
i
n
2
A
)
2
−
(
c
o
s
2
A
)
2
=
(
s
i
n
2
A
)
2
−
(
1
−
s
i
n
2
A
)
2
=
(
s
i
n
2
A
)
2
−
(
1
+
(
s
i
n
2
A
)
2
−
2
s
i
n
2
A
)
=
2
s
i
n
2
A
−
1
R
H
S
=
2
s
i
n
2
A
−
1
LHS = RHS
Suggest Corrections
0
Similar questions
Q.
Prove that
(
1
−
2
sin
2
A
)
cos
4
A
−
sin
4
A
=
2
cos
2
A
−
1
Q.
Prove that :
sin
4
A
−
cos
4
A
=
sin
2
A
−
cos
2
A
=
2
sin
2
A
−
1
=
1
−
2
cos
2
A
Q.
[cos
4
A - sin
4
A] is equal to:
Q.
cos
4
A − sin
4
A is equal to
(a) 2 cos
2
A + 1
(b) 2 cos
2
A − 1
(c) 2 sin
2
A − 1
(d) 2 sin
2
A + 1