1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Complementary Trigonometric Ratios
Prove that ...
Question
Prove that
sin
48
∘
sec
42
∘
+
cos
48
∘
cosec
42
∘
=
2
Open in App
Solution
Given
sin
48
∘
sec
42
∘
+
cos
48
∘
csc
42
∘
we know that,
sec
θ
=
1
cos
θ
and
csc
θ
=
1
sin
θ
∴
sin
48
∘
cos
42
∘
+
cos
48
∘
sin
42
∘
We have,
cos
(
90
−
θ
)
=
sin
θ
,
sin
(
90
−
θ
)
=
cos
θ
∴
sin
48
∘
cos
(
90
−
48
)
∘
+
cos
48
∘
sin
(
90
−
48
)
∘
=
sin
48
∘
sin
48
∘
+
cos
48
∘
cos
48
∘
=
1
+
1
=
2
∴
sin
48
∘
sec
42
∘
+
cos
48
∘
csc
42
∘
=
2
hence proved
Suggest Corrections
1
Similar questions
Q.
Find
the
value
of
sin
48
°
sec
42
°
+
cos
48
°
cosec
42
°
.
Q.
Prove that :
(i) tan 20° tan 35° tan 45° tan 55° tan 70° = 1
(ii) sin 48° sec 42° + cos 48° cosec 42° = 2
(iii)
sin
70
°
cos
20
°
+
cosec
20
°
sec
70
°
-
2
cos
70
°
cosec
20
°
=
0
(iv)
cos
80
°
sin
10
°
+
cos
59
°
cosec
31
°
=
2