1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Prove that: s...
Question
Prove that:
sin
5
θ
=
5
sin
θ
-
20
sin
3
θ
+
16
sin
5
θ
Open in App
Solution
LHS
=
sin
5
θ
=
sin
3
θ
+
2
θ
=
sin
3
θ
×
cos
2
θ
+
cos
3
θ
×
sin
2
θ
=
3
sinθ
-
4
sin
3
θ
1
-
2
sin
2
θ
+
4
cos
3
θ
-
3
cosθ
×
2
sinθcosθ
=
3
sinθ
-
6
sin
3
θ
-
4
sin
3
θ
+
8
sin
5
θ
+
8
cos
4
θ
-
6
cos
2
θ
sinθ
=
3
sinθ
-
10
sin
3
θ
+
8
sin
5
θ
+
8
sinθ
1
-
sin
2
θ
2
-
6
sinθ
1
-
sin
2
θ
=
3
sinθ
-
10
sin
3
θ
+
8
sin
5
θ
+
8
sinθ
1
-
2
sin
2
θ
+
sin
4
θ
-
6
sinθ
+
6
sin
3
θ
=
3
sinθ
-
10
sin
3
θ
+
8
sin
5
θ
+
8
sinθ
-
16
sin
3
θ
+
8
sin
5
θ
-
6
sinθ
+
6
sin
3
θ
=
5
sinθ
-
20
sin
3
θ
+
16
sin
5
θ
=
RHS
Hence
proved
.
Suggest Corrections
1
Similar questions
Q.
Prove that following identities:
s
i
n
5
θ
=
5
s
i
n
θ
−
20
s
i
n
3
θ
+
16
s
i
n
5
θ
Q.
Prove that
s
i
n
7
θ
−
s
i
n
5
θ
c
o
s
7
θ
+
c
o
s
5
θ
=
t
a
n
6
θ
Q.
Prove that
(
sin
5
θ
)
(
sin
θ
)
=
16
cos
4
θ
−
12
cos
2
θ
+
1
Q.
If
3
sin
θ
+
5
cos
θ
=
5
, prove that
5
sin
θ
−
3
cos
θ
=
±
3
.
Q.
Prove the following trigonometric identities.
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ − 3 cos θ = ± 3.