wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin 5θ=5 sin θ-20 sin3 θ+16 sin5 θ

Open in App
Solution

LHS=sin5θ =sin3θ+2θ =sin3θ×cos2θ+cos3θ×sin2θ =3sinθ-4sin3θ1-2sin2θ+4cos3θ-3cosθ×2sinθcosθ =3sinθ-6sin3θ-4sin3θ+8sin5θ+8cos4θ-6cos2θsinθ =3sinθ-10sin3θ+8sin5θ+8sinθ1-sin2θ2-6sinθ1-sin2θ =3sinθ-10sin3θ+8sin5θ+8sinθ1-2sin2θ+sin4θ-6sinθ+6sin3θ =3sinθ-10sin3θ+8sin5θ+8sinθ-16sin3θ+8sin5θ-6sinθ+6sin3θ =5sinθ-20sin3θ+16sin5θ =RHSHence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon