wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
sinπ5sin2π5sin3π5sin4π5=516

Open in App
Solution

LHS=sinπ5sin2π5sin3π5sin4π5 =122 sinπ5 sin4π5122 sin2π5 sin3π5 =14cosπ5-4π5-cosπ5+4π5cos2π5-3π5-cos2π5+3π5 =14cos-3π5-cos5π5cos-π5-cos5π5 =14cos3π5-cosπcosπ5-cosπ =14cos3π5+1cosπ5+1 =14cosπ-2π5+1cosπ5+1 =14-cos2π5+15+14+1 cos π5=5+14 =14-5-14+15+14+1 cos 2π5=5-14 =14-5-145+14-5-14+5+14+1 =14-52-116+5+1-5+14+1 =14-416+24+1 =14-14+24+1 =14-1+2+44 =516 =RHS

Thus, LHS = RHS

Hence, sinπ5sin2π5sin3π5sin4π5=516.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon