1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain and Range of Trigonometric Ratios
Prove that ...
Question
Prove that
sin
6
θ
+
cos
6
θ
=
1
−
3
sin
2
θ
.
cos
2
θ
Open in App
Solution
L.H.S.
=
sin
6
θ
+
cos
6
θ
=
(
sin
2
θ
)
3
+
(
cos
2
θ
)
3
Put
sin
2
θ
=
a
and
cos
2
θ
=
b
∴
L.H.S.
=
a
3
+
b
3
=
(
a
+
b
)
3
−
2
a
b
(
a
+
b
)
=
(
sin
2
θ
−
cos
2
θ
)
3
−
3
sin
2
θ
cos
2
θ
(
sin
2
θ
+
cos
2
θ
)
=
(
1
)
3
−
3
sin
2
θ
cos
2
θ
[
∵
sin
2
θ
+
cos
2
θ
=
1
]
=
1
−
3
sin
2
θ
cos
2
θ
=
R.H.S.
Suggest Corrections
0
Similar questions
Q.
Solve :
s
i
n
6
θ
+
c
o
s
6
θ
=
1
−
3
s
i
n
2
θ
.
c
o
s
2
θ
Q.
sin
6
θ
+
cos
6
θ
+
3
sin
2
θ
.
cos
2
θ
is
Q.
Prove the identify
(
sin
6
θ
+
cos
6
θ
)
=
1
−
3
sin
2
θ
cos
2
θ
.
Q.
If sin θ + cos θ = x, prove that
sin
6
θ
+
cos
6
θ
=
4
-
3
x
2
-
1
2
4
.