1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
Prove that ...
Question
Prove that
sin
6
θ
+
cos
6
θ
+
3
sin
2
θ
cos
2
θ
=
1
Open in App
Solution
We know that
sin
2
θ
+
cos
2
θ
=
1
Cubing both sides
(
sin
2
θ
+
cos
2
θ
)
3
=
1
3
(
sin
2
θ
)
3
+
(
cos
2
θ
)
3
+
3
sin
2
θ
cos
2
θ
(
sin
2
θ
+
cos
2
θ
)
=
1
sin
6
θ
+
cos
6
θ
+
3
sin
2
θ
cos
2
θ
(
1
)
=
1
sin
6
θ
+
cos
6
θ
+
3
sin
2
θ
cos
2
θ
=
1
Hence proved.
Suggest Corrections
1
Similar questions
Q.
The value of
sin
6
θ
+
cos
6
θ
+
3
sin
2
θ
cos
2
θ
is
Q.
Prove the following identities (1-17)
sin
6
θ
+
cos
6
θ
=
1
-
3
sin
2
θ
cos
2
θ
Q.
s
e
c
6
θ
+
c
o
s
6
θ
=
1
−
3
s
i
n
2
θ
c
o
s
2
θ
Q.
If sin θ + cos θ = x, prove that
sin
6
θ
+
cos
6
θ
=
4
-
3
x
2
-
1
2
4
.