We can prove this by using euler’s identity : eix=cosx+i sinx
therefore we have eiA=cosA+i sinA,
and eiB=cosB+isinB
now
eiA∗eiB=ei(A+B)
⇒(cosA+i sinA)(cosB+i sinB)=(cos(A+B)+i sin(A+B))
⇒(cosA∗cosB−sinA∗sinB)+i(sinA∗cosB+cosA∗sinB)=(cos(A+B)+i sin(A+B))
On equating the imaginary parts on both sides of the equation we get the required result
i.e.sin(A+B)=sinA∗cosB+cosA∗sinB