Hi,
LHS = sinA-cosA+1/sinA+cosA-1
divide both numerator and denominator by cosA
LHS=(tanA−1+secA)/(tanA+1−secA)LHS=(tanA−1+secA)/(tanA+1−secA)
Now
sec2A=1+tan2Asec2A=1+tan2A
sec2A−tan2A=1sec2A−tan2A=1
Using above relation at denominator of LHS
LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)
LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))
LHS=1/(secA−tanA)LHS=1/(secA−tanA)
LHS=RHSLHS=RHS
Hence Proved.
I think above proof will clear your doubt,
All the best.