sinA(1+tanA)+cosA(1+cotA)
=sinA+sinAtanA+cosA+cosAcotA
=sinA+sinAsinAcosA+cosA+cosAcosAsinA [∵tanA=sinAcosA,cotA=cosAsinA]
=sinA+sin2AcosA+cosA+cos2AsinA
=sin2Acos+sin3A+cos2AsinA+cos3AsinAcosA
=sinAcosA(sinA+cosA)sin3A+cos3AsinAcosA
=sinAcosA(sinA+cosA)(sin2A+cos2A−cosAsinA)sinAcosA
[∵a3+b3−(a+b)(a2−ab+b2)]
=(sinA+cosA)sinAcosA+sin2A+cos2A−sina+cosAsinacosA
=(sinA+cosA).1sinacosA[∵sin2a+cos2A=1]
=sinAsinAcosA+cosAsinAcosA
=1CosA+1sina
=secA+cosec A.