wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sinA(1+tanA)+cosA(1+cotA)=secA+cosecA

Open in App
Solution

sinA(1+tanA)+cosA(1+cotA)
=sinA+sinAtanA+cosA+cosAcotA
=sinA+sinAsinAcosA+cosA+cosAcosAsinA [tanA=sinAcosA,cotA=cosAsinA]
=sinA+sin2AcosA+cosA+cos2AsinA
=sin2Acos+sin3A+cos2AsinA+cos3AsinAcosA
=sinAcosA(sinA+cosA)sin3A+cos3AsinAcosA
=sinAcosA(sinA+cosA)(sin2A+cos2AcosAsinA)sinAcosA
[a3+b3(a+b)(a2ab+b2)]
=(sinA+cosA)sinAcosA+sin2A+cos2Asina+cosAsinacosA
=(sinA+cosA).1sinacosA[sin2a+cos2A=1]
=sinAsinAcosA+cosAsinAcosA
=1CosA+1sina
=secA+cosec A.

1206292_1384949_ans_70d8c2203dba40cc9b6edb1e22df831f.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon