wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin(B+CA)+sin(C+AB)+sin(A+BC)=4sinAsinBsinC

Open in App
Solution

TP:sin(B+CA)+sin(C+AB)+sin(A+BC)=4sinAsinBsinCLet,B+C=πA=sin(πAA)+sin(πBB)+sin(πCC)=sin(2A)+sin(2B)+sin(2C)=2sin(A+B)cos(AB)+2sinC.cosC=2sinC.cos(AB)+2sinC.cosC=2sinC[cos(AB)+2cosC]=2sinC[cos(AB)+2cos(π(A+B))]=2sinC[cos(AB)cos(A+B)]=2sinC[cosAcosB+sinAsinBcosAcosB+sinAsinB]=4sinAsinBsinC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon