TP:sin(B+C−A)+sin(C+A−B)+sin(A+B−C)=4sinAsinBsinCLet,B+C=π−A=sin(π−A−A)+sin(π−B−B)+sin(π−C−C)=sin(2A)+sin(2B)+sin(2C)=2sin(A+B)cos(A−B)+2sinC.cosC=2sinC.cos(A−B)+2sinC.cosC=2sinC[cos(A−B)+2cosC]=2sinC[cos(A−B)+2cos(π−(A+B))]=2sinC[cos(A−B)−cos(A+B)]=2sinC[cosAcosB+sinAsinB−cosAcosB+sinAsinB]=4sinAsinBsinC