L.H.S.=sin(n+1)x⋅sin(n+2)x+cos(n+1)x⋅cos(n+2)x
Using formula cos(A−B)=cosAcosB+sinAsinB
Let A=(n+1)x and B=(n+2)x
Then L.H.S.=cos[(n+1)x−(n+2)x]
=cos[nx+x−nx−2x]
=cos(–x)
=cosx=R.H.S.
So, L.H.S.=R.H.S.
sin(n+1)x⋅sin(n+2)x+cos(n+1)x⋅cos(n+2)x=cosx
Hence proved.