1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
First Derivative Test for Local Maximum
Prove that: s...
Question
Prove that: sinα + sin (α + 2π/3) + sin (α + 4π/3) = 0
Kindly proceed by using sin (A+B) = sinAcosB + cosAsinB (in sin (α + 2π/3) and sin (α + 4π/3)) in first step. :)
Open in App
Solution
We
know
that
:
sin
α
+
2
π
3
=
sin
α
×
cos
2
π
3
+
cos
α
×
sin
2
π
3
⇒
sin
α
+
2
π
3
=
sin
α
×
cos
π
-
π
3
+
cos
α
×
sin
π
-
π
3
⇒
sin
α
+
2
π
3
=
sin
α
-
cos
π
3
+
cos
α
×
sin
π
3
⇒
sin
α
+
2
π
3
=
sin
α
×
-
1
2
+
cos
α
×
3
2
⇒
sin
α
+
2
π
3
=
-
sin
α
2
+
3
2
cos
α
sin
α
+
4
π
3
=
sin
α
×
cos
4
π
3
+
cos
α
×
sin
4
π
3
⇒
sin
α
+
4
π
3
=
sin
α
×
cos
π
+
π
3
+
cos
α
×
sin
π
+
π
3
⇒
sin
α
+
4
π
3
=
sin
α
-
cos
π
3
+
cos
α
×
-
sin
π
3
⇒
sin
α
+
4
π
3
=
sin
α
×
-
1
2
+
cos
α
×
-
3
2
⇒
sin
α
+
4
π
3
=
-
sin
α
2
-
3
2
cos
α
sin
α
+
sin
α
+
2
π
3
+
sin
α
+
4
π
3
=
sin
α
-
sin
α
2
+
3
2
cos
α
-
sin
α
2
-
3
2
cos
α
=
0
Suggest Corrections
1
Similar questions
Q.
If
α
and
β
are angles in the first quadrant
tan
α
=
1
7
,
sin
β
=
1
√
10
,
then using the formula
sin
(
A
+
B
)
=
sin
A
cos
B
+
cos
A
sin
B
,
the value of
(
α
+
2
β
)
is
Q.
If
sin
α
,
sin
2
α
,
1
,
sin
4
α
and
sin
5
α
are in A.P. where
−
π
<
a
<
π
, then
α
lies in the interval-
Q.
If
s
i
n
α
=
1
√
5
a
n
d
s
i
n
β
=
3
5
,
t
h
e
n
β
−
α
lies in the interval
Q.
If
β
and
α
are +ive angles less than two right angles and
c
o
s
α
+
c
o
s
(
α
+
β
)
+
c
o
s
(
α
+
β
+
γ
)
=
0
and
s
i
n
α
+
s
i
n
(
α
+
β
)
+
s
i
n
(
α
+
β
+
γ
)
=
0
then
β
=
γ
=
2
π
/
3
Q.
I
f
2
s
i
n
α
1
+
c
o
s
α
+
s
i
n
α
=
y
,
t
h
e
n
1
−
c
o
s
α
+
s
i
n
α
1
+
s
i
n
α
i
s
e
q
u
a
l
t
o
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Extrema
MATHEMATICS
Watch in App
Explore more
First Derivative Test for Local Maximum
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app