wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin​α + sin (α + 2π/3) + sin (α + 4π/3) = 0
Kindly proceed by using sin (A+B) = sinAcosB + cosAsinB (in sin (α + 2π/3) and sin (α + 4π/3)) in first step. :)

Open in App
Solution

We know that : sin α+2π3 = sin α × cos2π3 + cos α × sin2π3sin α+2π3 = sin α × cosπ-π3 + cos α × sinπ-π3sin α+2π3 = sin α - cos π3 + cos α × sin π3sin α+2π3 = sin α × -12 + cos α × 32 sin α+2π3 = -sin α2+32 cos α sin α+4π3 = sin α × cos4π3 + cos α × sin4π3sin α+4π3 = sin α × cosπ+π3 + cos α × sinπ+π3sin α+4π3 = sin α - cos π3 + cos α × -sin π3sin α+4π3 = sin α × -12 + cos α × -32 sin α+4π3 = -sin α2-32 cos αsin α + sin α+2π3 + sin α+4π3 = sin α -sin α2+32 cos α -sin α2-3 2 cos α = 0

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon