Prove that sinθ1-cosθ+tanθ1+cosθ=secθ.cosecθ+cotθ
As we have sinθ1-cosθ+tanθ1+cosθ=secθ.cosecθ+cotθ
Let us start with LHS
sinθ(1–cosθ)+tanθ(1+cosθ)∵(1–cosθ)(1+cosθ)=12-cos2θ=sinθ(1+cosθ)+tanθ(1-cosθ)(1–cos²θ)=sinθ(1+cosθ)+tanθ(1-cosθ)(sin2θ)∵sin2θ=12-cos2θ=sinθ(1+cosθ)+(tanθ-sinθ)(sin2θ)=sinθ1+cosθ+1cosθ–1sin2θ=cosθ+1cosθsinθ=1cosθSinθ+cosθsinθ=secθ.cosecθ+cotθ=LHS
Hence Proved