wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (sinθ-cosθ+1)(sinθ+cosθ-1)=1(secθ-tanθ).


Open in App
Solution

Solving the function using trigonometric identities:

As we have (sinθ-cosθ+1)(sinθ+cosθ-1)=1(secθ-tanθ).

LHS =(sinθcosθ+1)(sinθ+cosθ1)

Dividing the numerator and denominator by cosθ

sinθcosθcosθcosθ+1cosθsinθcosθ+cosθcosθ1cosθ

=(tanθ1+secθ)(tanθ+1secθ)

Multiplying and dividing by (tanθsecθ),

=(tanθ+secθ1)(tanθsecθ+1)×(tanθsecθ)(tanθsecθ)(tanθ+secθ)((tanθsecθ=tan2θsec2θ)=[(tan2θsec2θ(tanθsecθ)][(tanθsecθ+1)(tanθsecθ)]

Using the identity sec2θtan2θ=1,

=(-1tanθ+secθ)[(tanθsecθ+1)(tanθsecθ)]=-1(tanθsecθ)=1(secθtanθ)

= RHS

Hence proved.


flag
Suggest Corrections
thumbs-up
127
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon