CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
183
You visited us 183 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : sinΘ+sin2Θ+sin3Θ+....+sinnΘ=sin(n+1)θ2sinnθ2sinθ2

Open in App
Solution

L.H.S.

f(x)=sinθ+sin2θ+sin3θ++sinnθ=sin(n+1)θ2sinnθ2sinθ2

Step (1):-

For n=1 L.H.S.

sinnθ=sinθ

For n=1 R.H.S.

sin(n+12)θsinnθ2sinθ2=sin2θ2sinθ2sinθ2

=sinθ

Thus then the result is true for n=1

Step (2):-

Let it is true for n=k.

Therefore,

sinθ+sin2θ+sin3θ++sinkθ=sin(k+1)2θsinkθ2sinθ2

Now in the step (3):-

To prove that, It is true for n=(k+1)

Then,

sinθ+sin2θ+sin3θ++sinkθ+sin(k+1)2θ=sin(k+12)θsinkθ2sinθ2+sin(k+1)θ

=sin(k+12)θsinkθ2sinθ2+2sin(k+1)2θcos(k+1)2θ

=sin(k+12)θsinθ2[sinkθ2+2cos(k+1)2θsinθ2]

=sin(k+12)θsinθ2[sinkθ2+2cos[(k+12)θ+θ2]sin[(k+12)θθ2]]

=sin(k+12)θsinθ2[sinkθ2+sin[(k+22)θsink2]]

=sin(k+12)θsinθ2.sin(k+1)+12x

Then it is true for n=k+1 therefore nN

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon