wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that [sin x+sec x]2+[cos x+csc x]2=[1+sec x.csc x]2

Open in App
Solution

Simplifying the LHS of [sinx+secx]2+[cosx+cscx]2=[1+secxcscx]2

[sinx+secx]2+[cosx+cscx]2=[sinxcosx+1cosx]2+[sinxcosx+1sinx]2

=sin2xcos2x+1+2sinxcosxcos2x+sin2xcos2x+1+2sinxcosxsin2x

=sin4xcos2x+sin2x+2sin3xcosx+sin2xcos4x+cos2x+2sinxcos3xcos2xsin2x

=(sin2x+cos2x)+(sin4xcos2x+sin2xcos4x)+(2sin3xcosx+2sinxcos3x)cos2xsin2x

=1+sin2xcos2x(sin2x+cos2x)+2sinxcosx(sin2x+cos2x)cos2xsin2x

=1+sin2xcos2x+2sinxcosxcos2xsin2x

=1cos2xsin2x+cos2xsin2xcos2xsin2x+2sinxcosxcos2xsin2x

=sec2xcsc2x+1+2secxcscx

=[1+secxcscx]2

=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon