Simplifying the LHS of [sinx+secx]2+[cosx+cscx]2=[1+secx⋅cscx]2
[sinx+secx]2+[cosx+cscx]2=[sinxcosx+1cosx]2+[sinxcosx+1sinx]2
=sin2xcos2x+1+2sinxcosxcos2x+sin2xcos2x+1+2sinxcosxsin2x
=sin4xcos2x+sin2x+2sin3xcosx+sin2xcos4x+cos2x+2sinxcos3xcos2xsin2x
=(sin2x+cos2x)+(sin4xcos2x+sin2xcos4x)+(2sin3xcosx+2sinxcos3x)cos2xsin2x
=1+sin2xcos2x(sin2x+cos2x)+2sinxcosx(sin2x+cos2x)cos2xsin2x
=1+sin2xcos2x+2sinxcosxcos2xsin2x
=1cos2xsin2x+cos2xsin2xcos2xsin2x+2sinxcosxcos2xsin2x
=sec2xcsc2x+1+2secxcscx
=[1+secxcscx]2
=RHS