Prove that sin x +sin 3x+sin 5x+sin 7x=4 cos x cos 2x sin 4x.
We have LHS =sin x+sin 3x+sin 5x+sin 7x
=(sin 7x+sin x)+(sin 5x+sin 3x)
=2 sin(7x+x2)cos(7x−x2)+2sin(5x+3x2)cos(5x−3x2)
[∵sin C+sin D=2sin(C+D2)cos(C+D2)]
=2 sin 4X cos 3X +2 sin 4X cos x =2sin 4x(cos 3x +cos x)
=2 sin 4x× 2 cos (3x+x2)cos (3x−x2)
[∵cos C+cosD=2cos(C+D2)ocs()C−D2]
=4 sin 4x cos2x sin 4x=RHS Hence proved