Prove that:
sin x + sin 3x +sin 5x + sin 7x = 4 cos x cos 2x sin 4x
We have L.H.S.
= sin x + sin 3x + sin 5x + sin 7x
= (sin 7x+ sin x) + (sin 5x + sin 3x)
= [2 sin(7x+x2)cos(7x−x2)]+[2 sin(5x+3x2)cos(5x−3x2)]
2 sin 4x cos 3x + 2 sin 4x cos x
[∵sin C+sin D=2sinC+D2.cosC−D2]
= 2 sin 4x [ cos 3x + cos x]
= 2 sin 4x [2 cos(3x+x2)cos(3x−x2)]
[∵cos C+cos D=2 cosC+D2.cosC−D2]
= 2 sin 4x [2 cos 2x cos x]
= 4 cos x cos 2x sin 4x = R.H.S