L.H.S=sinx+sin3x+sin5x+sin7x
=(sin7x+sinx)+(sin5x+sin3x)
={2 sin(7x+x2)cos(7x−x2)}+{2sin(5x+3x2)cos(5x−3x2)}
∵sinA+sinB=2 sin(A+B2)cos(A−B2)=2sin4xcos3x+2sin4xcosx
=2sin4x[cos3x+cosx]
=2sin4x{2cos(3x+x2)cos(3x−x2)}
=2sin4x(2cos2xcosx)
=4cosxcos2xsin4x=R.H.S.
Hence proved.