wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin2π18+sin2π9+sin27π18+sin24π9=2

Open in App
Solution

LHS = sin2π18 +sin2π9+sin27π18+sin24π9 = sin2π18 +sin22π18+sin27π18+sin28π18 = sin2π18 +sin22π18+sin27π18+sin28π18 = sin2π18 +sin22π18+sin2π2-2π18+sin2π2-π18 = sin2π18 +sin22π18+cos22π18+cos2π18 = sin2π18 +cos2π18+sin22π18+cos22π18 =1+1 =2 =RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon