Prove that √2+√2+√2+2 cos 8θ=2 cos θ.
Or
Prove that (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)=18
LHS = √2+√2+√2+2cos 8θ
= √2+√2+√2(1+cos 8θ)
= √2+√2+√2.2cos2 4θ[∵ 2cos2 θ=1+cos 2θ]
= √2+√2+2cos 4θ=√2+√2(1+cos 4θ)
= √2+√2.2cos2 2θ[∵ 2cos2 θ=1+cos 2θ]
= √2+2cos 2θ
= √2(1+cos 2θ)
= √2.2cos2 θ=2cos θ=RHS Hence proved.
Or
LHS = (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)
= (1+cosπ8)(1+cos3π8)[1+cos(π−3π8)][1+cos(π−π8)]
= (1+cosπ8)(1+cos3π8)(1−cosw3π8)(1−cosπ8)
= (1+cosπ8)(1−cosπ8)(1+cos3π8)(1−cos3π8)
= (1−cos2π8)(1−cos23π8)=sin2π8×sin23π8
[∵ 1−cos2 θ=sin2 θ]
= (1−cos π/42)(1−cos3π42)
[∵ sin2x=1−cos 2x2]
= 14(1−1√2)(1+1√2)
= 14(1−12)=14×12=18=RHS Hence proved.