wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 3 cosec 20sec 20=4.

Or

If cos (α+β)=45, sin(αβ)=513 and α, β lie between 0 and π4, find tan 2α.

Open in App
Solution

LHS= 3 cosec 20sec 20=tan 60 cosec 20sec 20

=sin 60cos 601sin 201cos 20

=sin 60 cos 20cos 60 sin 20cos 60 sin20 cos 20=sin(6020)cos60 sin20 cos 20

=sin40cos60 sin20 cos20

=2 sin20 cos2012×sin20 cos20

=4=RHS

We have cos(α+β)=45 and sin(αβ)=513

tan(α+β)=sin(α+β)cos(α+β)=1cos2(α+β)cos(α+β)=1(45)245=92545=34

and tan(αβ)=sin(αβ)1sin2(αβ)=5131(513)2=51316925169=5131213=512

Now, tan 2α=tan(α+β+αβ)

=tan(α+β)+tan(αβ)1tan(α+β).tan(αβ)=34+512134×512=36+204815

Hence, tan 2α=5633

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon