wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 5 is irrational and hence prove that (25) is also irrational.

Open in App
Solution

Let's prove this by the method of contradiction-
Say, √5 is a rational number. ∴ It can be expressed in the form p/q where p,q are co-prime integers.
⇒√5=p/q
⇒5=p²/q² {Squaring both the sides}
⇒5q²=p² (1)
⇒p² is a multiple of 5. {Euclid's Division Lemma}
⇒p is also a multiple of 5. {Fundamental Theorm of arithmetic}
⇒p=5m
⇒p²=25m² (2)
From equations (1) and (2), we get,
5q²=25m²
⇒q²=5m²
⇒q² is a multiple of 5. {Euclid's Division Lemma}
⇒q is a multiple of 5.{Fundamental Theorm of Arithmetic}
Hence, p,q have a common factor 5. this contradicts that they are co-primes. Therefore, p/q is not a rational number. This proves that √5 is an irrational number.
For the second query, as we've proved √5 irrational. Therefore 2-√5 is also irrational because difference of a rational and an irrational number is always an irrational number.



flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Revisiting Irrational Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon